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In this study, the effects of bend radius on stress concentration and permanent deformation in 
sheet metal geometries were numerically investigated using both elastic and elastoplastic material 
models. Static analyses were conducted in ANSYS for ST52 (S355) steel plates with a constant 
thickness of 4 mm and various inner bend radii (R = 2, 4, 6, 8 mm). The material behavior was 
defined by a Multilinear Isotropic Hardening (MISO) model calibrated from tensile test data. 
Results showed that as the bend radius increased, the maximum equivalent stress decreased almost 
linearly. The mean stress was 390 MPa, with a standard deviation of 6.98 MPa and a strong 
negative correlation between R and stress (r = −0.994). The regression equation σ = −2.73R + 
403.3 (MPa) indicates a stress drop of approximately 2–3 MPa per mm radius increase. Elastic 
models produced unrealistic stresses exceeding the material’s ultimate strength (≈ 670 MPa), while 
the MISO-based elastoplastic model realistically captured post-yield strain hardening and stiffness 
reduction. The activation of Large Deflection significantly improved deformation prediction under 
geometric nonlinearity, and Force Convergence evaluation confirmed stable and accurate nonlinear 
solutions. These results demonstrate that reliable FE analysis of sheet bending requires both 
plasticity modeling and geometric nonlinearity for physically meaningful stress prediction. 
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1. INTRODUCTION 

Bending of thin steel sheets is one of the most 
fundamental manufacturing operations in structural 
engineering and metal forming, extensively applied to 
produce load-bearing components in construction, 
automotive, and thin-walled structural assemblies where 
dimensional precision and residual strength are critical [1]. 
The mechanics of sheet bending are governed by the 
interplay between geometry (sheet thickness t, inner bend 
radius R, and R/t ratio), material constitutive behavior, and 
process boundary conditions. Small bend radii induce steep 
strain gradients through the thickness, localizing plastic 
flow near the outer fibers and generating high stress 
concentrations at the punch–die interface. Accurate 
prediction of these effects is therefore essential for ensuring 
manufacturability, springback control, and service 
reliability [2]. 

Finite element analysis (FEA) has become the principal 
tool for quantifying stress distribution, plastic strain 
localization, and residual curvature after unloading [3]. 
However, the fidelity of these predictions depends strongly 
on three interrelated modeling aspects:(1) constitutive 
representation of the material (isotropic vs. kinematic, 
bilinear vs. multilinear), (2) inclusion of geometric 
nonlinearity (small vs. Large deflection), and (3) [4] mesh 
refinement and element type (shell vs. solid, through-
thickness resolution) [5]. 

Several studies have shown that purely elastic analyses 
yield unrealistic von Mises stress magnitudes, sometimes 
exceeding the ultimate tensile strength, because yielding 
and strain hardening are not captured. Conversely, 
experimentally calibrated Multilinear Isotropic Hardening 
(MISO) models accurately replicate post-yield behavior, 
ensuring physically meaningful stress-strain relationships 
and improved agreement with experimental data [6]. 

Material hardening representation is particularly critical. 
Isotropic hardening assumes uniform expansion of the yield 
surface with plastic strain and is simple to calibrate from 
uniaxial tensile tests, but it may underestimate unloading 
and reverse loading effects that influence springback. 
Combined isotropic-kinematic formulations, although more 
complex, provide superior predictions in cyclic bending-
unloading scenarios. Recent works stress that calibration 
with true stress - true strain data - especially when 
represented with multilinear segments - substantially 
reduces discrepancies between FEA and experimental 
results, both in residual stress and permanent deformation 
predictions [7]. 

Geometric nonlinearity - commonly referred to as the 
Large Deflection effect - plays a dominant role in 
accurately describing the deformation path of small-radius 
bends. When geometric nonlinearity is neglected, load 
redistribution and curvature evolution are misrepresented, 
leading to errors in both displacement and stress outcomes. 
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Analytical and numerical studies have demonstrated that 
including geometric nonlinearity is indispensable for 
achieving realistic curvature evolution and ensuring solver 
stability via force convergence monitoring [3]. 

Mesh discretization is another decisive factor 
influencing accuracy. Shell elements are computationally 
efficient for global analyses but fail to capture through-
thickness stress gradients, especially in fillet regions where 
strain localization dominates. High-order 3D solid elements 
(e.g., SOLID186) with fine local mesh refinement (0.25–
0.5 mm) and controlled growth rates (≤1.15) deliver more 
accurate predictions for peak stress and plastic strain 
distribution. Mesh convergence studies have consistently 
shown that fine local refinement around bend radii and die–
contact regions prevents artificial stress smoothing and 
ensures numerical stability [8, 9]. 

Experimental investigations on S355 (ST52) structural 
steel indicate that the yield (≈355 MPa) and ultimate (≈670 
MPa) strengths, along with moderate work hardening, 
produce significant residual stresses near sharp bend radii. 
These localized stresses can initiate fatigue cracking during 
cyclic service unless mitigated by proper forming 
parameters and residual stress management. This 
correlation between forming parameters, stress 
concentrations, and fatigue behavior underlines the need to 
integrate forming simulations with durability analyses [10]. 

Recent research efforts have also aimed to enhance 
numerical efficiency and model realism by incorporating 
hybrid modeling strategies. These include constitutive 
calibration using high-fidelity tensile data for MISO input, 
reduced-order modeling, and even machine learning 
surrogates trained on nonlinear FEA outputs. Nevertheless, 
despite computational advances, the reliability of such 
approaches fundamentally depends on accurate plasticity 
representation and inclusion of geometric nonlinearity [8, 11]. 

Despite the progress, two research gaps remain 
apparent. First, small-radius bending analyses of S355 steel 
using experimentally verified MISO curves and explicit 
force-convergence documentation are scarce in the 
literature. Second, many comparative studies neglect large-
deflection effects or use inconsistent material parameters, 
hindering clear assessment of R/t influence and MISO 
calibration on stress evolution [6, 12]. 

Therefore, this study addresses these gaps through a 
comprehensive numerical investigation of the influence of 
bend radius (R = 2–8 mm) on the stress field of S355 
structural steel (t = 4 mm). The material model employs a 
MISO curve calibrated from laboratory tensile tests, applied 
in both elastic and elastoplastic static analyses under 
identical loading and boundary conditions. Geometric 
nonlinearity (Large Deflection) is activated, and 
convergence behavior is evaluated via Force Convergence 
criteria to ensure numerical stability. 

Results are analyzed in terms of maximum equivalent 
(von Mises) stress, plastic strain distribution, and residual 
deformation, aiming to establish robust and reproducible 
modeling practices for sheet-bending simulations. The 
specific objectives and contributions of this study are 
summarized as follows: 

• Quantitative determination of the peak equivalent 
stress–radius (σ_eq–R) relationship for S355 sheets with t = 
4 mm and R = 2, 4, 6, 8 mm. 

• Demonstration of the necessity of MISO-based 
plasticity modeling for physically valid FEA predictions 
compared to elastic-only analyses [4]. 

• Evaluation of the Large Deflection effect on 
convergence behavior and geometric accuracy. 

• Formulation of reproducible FEA modeling guidelines 
for thin-sheet bending, including local mesh sizing (0.25–
0.5 mm), 10–12 inflation layers, and controlled growth rate 
(≤1.15) [5]. 

By systematically analyzing these aspects, the study 
contributes to both academic understanding and industrial 
application of reliable finite element modeling for small-
radius sheet bending of structural steels. 

2. MATERIAL AND MODEL DEFINITION 

The base material was selected as S355 (ST52) 
structural steel, whose mechanical properties were 
experimentally determined through tensile tests performed 
in accordance with ASTM E8 standards using a Zwick 
600E (600 kN) universal testing machine (Fig. 1). The 
measured engineering stress–strain data were converted to 
true values and used to generate a Multilinear Isotropic 
Hardening (MISO) material model. 

 

 

Fig. 1. Experimental tensile specimen used for calibration of the 
MISO model 

The MISO curve was defined by true stress-plastic 
strain data representing strain hardening behavior beyond 
the yield point. The experimentally determined parameters 
were: 

• Yield strength = 355 MPa 
• Ultimate tensile strength ≈ 670 MPa 
• Elastic modulus E = 210 GPa 
• Poisson’s ratio ν = 0.3 
This plasticity [4] model updates the stiffness matrix 

during each iteration, enabling the numerical analysis to 
accurately follow the deformation path observed 
experimentally (Table 1). 
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Table 1 True stress–plastic strain data defining the Multilinear 
Isotropic Hardening model 

Plastic Strain (mm/mm) Stress (MPa) 

0 355 

0.0155 400 

0.026 420 

0.0296 440 

0.0413 465 

0.0574 489 

0.08 528 

0.113 572 

0.143 593 

0.164 607 

0.188 624 

0.206 634 

0.226 638 

0.241 641 

0.3 642 

1 645 

2 660 

10 670 
 
Geometric Modeling And Meshing 

The experimentally and numerically obtained tensile 
results showed strong agreement, particularly in the 
necking region, confirming the accuracy of the calibrated 
MISO model (Fig. 2). 

All bending geometries were designed in CATIA 
Generative Sheet Metal Design using a constant sheet 
thickness of t = 4 mm and inner radii R = 2, 4, 6, and 8 mm. 
The modeled specimen dimensions were 150 × 59.3 mm 
(Fig. 3). One end was fully fixed, while a total load of 5 kN 
was applied at the opposite free edge. Although the 
geometry is thin-walled, 3D solid elements (SOLID186) 
were used instead of shell elements to capture through-
thickness stress variations in the fillet regions. 

A global element size of 2 mm was used, with local 
refinement applied in the radius zone down to 
approximately 0.25 mm to resolve high strain gradients. 
Inflation layers (10–12 layers, growth rate ≤ 1.15) were 
employed to improve accuracy through the sheet thickness. 
The generated mesh quality was verified, and the average 
skewness value remained below 0.36, ensuring accurate 
stress and strain representation throughout the model. 
Previous studies showed that high-order 3D solid elements 
deliver more accurate stress distributions and springback 
estimates in small-radius V-bending than conventional shell 
meshes [5, 13]. 

 

Nonlinear Solution Procedure 
In all analyses, Large Deflection was activated to 

include geometric nonlinearity. This option updates the 
stiffness matrix at each iteration, maintaining equilibrium 
accuracy during large rotations. The Newton–Raphson 
iterative method was used for equilibrium at every load step 
(Fig. 4-7). 

 

Fig. 2. Tensile test simulation verifying the MISO hardening 
model. The digital specimen reproduces necking behavior 

consistent with experiment 

 

Fig. 3. 3D geometry of the bent sheet specimen created in CATIA 
Generative Sheet Metal Design, showing inner bend radius 

(R = 2–8 mm) and thickness (t = 4 mm) 

 

Fig. 4. Equivalent von Mises stress distributions for bend radii 
(R=2 mm) 

 

Fig. 5. Equivalent von Mises stress distributions for bend radii (R 
= 4 mm) 
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Fig. 6. Equivalent von Mises stress distributions for bend radii 
(R = 6 mm) 

 

Fig. 7. Equivalent von Mises stress distributions for bend radii 
(R = 8 mm) 

 

Fig. 8. 2D geometry of the bent sheet specimen created in Space 
Claim 

 

Fig. 9. Shell model stress analysis 

Whenever possible, three-dimensional (3D) models 
should be converted and analyzed in two-dimensional (2D) 
form, as this approach represents one of the most practical 
and effective methods for numerical verification and model 
validation. 

In this context, the surface representation of the sheet 
model (R = 2 mm), originally analyzed in 3D, was 
generated, and a secondary analysis was conducted while 
maintaining the same MISO material definition, mesh 
density, and solution parameters (Fig. 8). 

As a result of this comparative evaluation, the 
maximum equivalent stress obtained from the surface 
model was 399.62 MPa, demonstrating a high level of 
agreement with the 3D analysis results (Fig. 9). 

When the same mesh and loading were analyzed 
without the MISO definition, the equivalent stress for R = 2 
mm rose to 1185.9 MPa, far exceeding the ultimate strength 
of 670 MPa for S355 (Fig. 10). 

 
Force-Convergence And Solver Behavior 

All nonlinear runs converged within 11–13 iterations. 
Residual forces dropped from ~624 N to < 3 N per sub-
step. Minor oscillations between iterations 3-5 
corresponded to stiffness updates during plastic flow and 
curvature formation (Fig. 11). 

 

Fig. 10. Solution obtained with generic structural-steel definition 
(showing unrealistic 1185 MPa stress) 

 

Fig. 11. Force convergence curve showing residual reduction and 
substep stability (11 iterations, 3 N threshold) 

The ANSYS solution settings preferred and their effects 
are summarised in Table 2. 

 
Table 2 Summary of solution-stability factors 

Condition Effect on Solution 

Large Deflection = ON Adds geometric nonlinearity; slight 
oscillations at curvature formation. 

MISO Plasticity Active Iterative stiffness updates; multiple 
equilibrium iterations. 

Fine Mesh (0.5–1 mm) Captures local gradients; improves 
stability at higher CPU time. 
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3. RESULTS 

The finite element analysis performed using the MISO 
material definition for the tensile specimen demonstrated 
complete agreement with the experimental tensile test, both 
in terms of stress distribution and necking (plastic 
deformation) behavior (Fig. 12). 

 

Fig. 12. Comparison of Experimental Tensile Specimens and 
Finite Element (FEM) Simulation Results under ASTM E8 

Standard Validation 

The 3D geometry of the bent sheet specimen was 
generated in CATIA Generative Sheet Metal Design, 
incorporating inner bend radii ranging from R = 2–8 mm 
and a constant thickness of t = 4 mm. Finite element 
analyses conducted on these models revealed that the 
maximum equivalent (von Mises) stress decreases nearly 
linearly with increasing bend radius. For instance, at R = 2 
mm, the equivalent stress reached approximately 398 MPa, 
whereas at R = 8 mm, it decreased to 382 MPa. The 
regression relationship between bend radius and maximum 
stress is presented in Table 3. 

 
Table 3 Bend Radius - Stress Relation 

No R (mm) Max σ_eq (MPa) 

1 2 398.36 

2 4 394.22 

3 6 386.32 

4 8 381.93 
 
The regression relation between bend radius and 

maximum stress was found as: 
σ (MPa) = −2.73 R (mm) + 403.3 
This indicates that an increase of 1 mm in radius results 

in a reduction of about 2.7 MPa in the peak stress. 
The plastic strain contours indicated pronounced strain 

localization along the inner fillet for R = 2–4 mm, while a 
nearly uniform strain distribution was observed for R ≥ 6 
mm, consistent with increased triaxiality and local plastic 
flow at smaller radii. For the surface (2D) model analyzed 
under identical boundary and loading conditions, the 
equivalent von Mises stress at R = 2 mm was obtained as 
399.62 MPa. However, when the MISO plasticity definition 
was omitted, the corresponding stress value for the same 
radius increased unrealistically to 1185.9 MPa, exceeding 
the ultimate strength of S355 steel. 

4. DISCUSSION 

The comparative analyses clearly demonstrate that 
realistic finite-element (FE) predictions of sheet-bending 

behavior require both experimentally calibrated plasticity 
(MISO) and geometric nonlinearity (Large Deflection). 
When plasticity was neglected, the simulation produced a 
physically inconsistent peak stress of 1185 MPa at R = 2 
mm, exceeding the ultimate tensile strength of S355 (≈670 
MPa). Conversely, the MISO-based model reproduced the 
true stress–strain response and necking behavior observed 
experimentally, validating its physical consistency [14]. 

The force-convergence behavior across all nonlinear 
runs exhibited high stability. Residual forces dropped 
below 3 N within 11–13 iterations, indicating proper 
equilibrium and solver robustness. Likewise, monitoring 
Newton–Raphson convergence provides quantitative 
assurance of solver stability in nonlinear analyses [8]. 

Verification of mesh independence was achieved 
through a 2D–3D comparison: the 3D analysis produced a 
maximum stress of 398.36 MPa, while the 2D surface 
model yielded 399.62 MPa - a difference below 0.3%. This 
consistency confirms the adequacy of the selected mesh 
parameters (local size 0.25 - 0.5 mm, 10 - 12 inflation 
layers, growth ≤1.15). The average mesh skewness of 0.36 
remained within high-quality bounds for reliable stress-
gradient capture. 

The bend-radius parameter (R) exhibited only a limited 
mechanical influence on stress levels. The nearly linear 
stress decrease of ≈2.7 MPa/mm resulted in a total variation 
of <5% between R = 2 mm and R = 8 mm. This minor 
effect indicates that manufacturing and tooling 
considerations should take precedence over theoretical 
stress minimization [1]. 

The activation of Large Deflection significantly 
improved geometric accuracy by accounting for curvature-
induced nonlinearities. Without it, curvature evolution and 
stress redistribution become unrealistic even with accurate 
material laws. In the present study, the joint use of MISO 
and geometric nonlinearity produced stable convergence 
(<3 N residual) and physically consistent strain localization. 

From a manufacturing standpoint, these results confirm 
that bend-radius selection should primarily depend on 
tooling geometry, die configuration, and dimensional-
accuracy requirements, since the minor stress differences 
among R values are mechanically negligible. The findings 
also validate that MISO-based plasticity, Large Deflection, 
and high-quality meshing collectively establish a 
numerically robust and experimentally consistent modeling 
framework for small-radius sheet bending of structural 
steels [2]. 

5. CONCLUSIONS 

• Increasing bend radius lowers peak von Mises stress 
nearly linearly; for 4-mm S355, σ ≈ −2.73R + 403.3 MPa 
(≈2.7 MPa drop per 1 mm, R=2–8 mm). 

• Purely elastic analysis is non-physical: at R=2 mm, 
≈1185.9 MPa exceeds ~670 MPa UTS; MISO 
elastoplasticity is required. 

• Enable geometric nonlinearity (Large Deflection); 
combined with MISO it yields stable convergence and 
physically consistent deformation. 

• Nonlinear runs are stable: residual forces ≲ 3 N per 
substep with convergence in 11–13 iterations. 

• 2D vs. 3D models differ by <0.3% in peak stress 
(398.36 vs. 399.62 MPa), validating the faster 2D option. 

• Mesh quality is critical: fillet refinement ~0.25–0.5 
mm, 10–12 inflation layers, growth ≤1.15, average 
skewness <0.36. 
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• The calibrated MISO curve (σy≈355 MPa, UTS≈670 
MPa; E=210 GPa, ν=0.3) reproduces tensile necking and 
post-yield hardening in bending. 

• Bend radius affects stress modestly (<5%); prioritize 
die geometry, precision, and tolerances. MISO + Large 
Deflection + quality meshing provides a repeatable, 
industry-ready FEA workflow. 
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