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Optimum stacking sequences of laminated composite beams are investigated for minimum 
normal and shear stresses by the use of two different failure criteria for different boundary 
conditions. The stacking sequence optimization is carried out by genetic algorithm (GA) optimization 
technique. Fiber orientation angles are used as the design parameters. During the optimization 
process, Tsai-Wu and Tsai-Hill failure criteria are both used as a control mechanism in the 
algorithm for each generation. Since the minimization of bending stress parameters and failure 
analysis are performed at the same time, convergence and reliability of the optimum stress values 
are improved respectively. 
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INTRODUCTION 
Depending on the type and purpose of use, the 

structures may be subjected to various effects (static 
loading, dynamic loading, impact etc.) and as a result of 
these effects, different mechanical behaviors may also take 
place. In engineering structures, it is desirable that the 
material can give the most appropriate response or behavior 
in order to prevent failure from any external effects. In 
other words, it is aimed to obtain the design parameters that 
can be run at a determined life before the structure is 
damaged. Since the fiber reinforced composite materials 
have an anisotropic and heterogeneous structures, they 
should be analyzed within certain failure criteria. Mines and 
Alias [1] investigated the stress analysis of military vehicles 
in which outer layers are made of hardened glass epoxy 
material (SE84) and inner layers are made of foam 
materials H100 and H200. Hayes and Lesko [2] studied on 
a model to describe failure types of composite beams used 
in daily life and make it possible to predict strength 
parameters used in fatigue life prediction more accurately. 
Naik, et al [3] investigated the minimum weight designs of 
composite layers by use of maximum stress and Tsai-Wu 
failure criteria. With the new model developed, it was tried 
to increase the effectiveness of the failure criterion. Lopez 
et al [4] analyzed the optimal structure behavior using first 
layer failure criterion in the optimization of layered 
composite structures. They performed the minimum weight 
and cost optimization of layered composite structures by 
taking the maximum stress, Tsai-Wu and Puck failure 
criteria into consideration. Santiuste et al [5] compared Hou 
and Hashin failure criteria for composite beams damaged 
by impact at low speed through three-point bending test 
machine under dynamic conditions. Naik et al [6] attempted 
to optimize the laminated composite structures using 

optimization techniques such as vector set optimization and 
genetic algorithm. Optimization process was terminated by 
minimizing the weight and using different failure criteria. 

The objective of this study is to perform the stacking 
sequence optimization of laminated composite beams by 
taking Tsai-Wu and Tsai-Hill failure criteria into 
consideration in order to obtain the minimum bending 
stresses. 

ANALYTICAL METHOD 
In the present study, three layered beams having 

rectangular cross-section, constant thickness of h, unit 
width, length of L and a transverse distributed load of q(x) 
on its top plane are considered. The coordinate system is 
placed in the mid-plane where 0 ≤ x ≤ L and –h/2 ≤ z ≤ h/2 
as illustrated in Figure 1. 

 

Fig. 1. Beam geometry and coordinate axes 

The displacement fields are assumed to be in parallel 
with the general shear deformation shell theory [7] and 
given as follows: 
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(1) 

U and W represent the displacement fields with respect 
to x and z. u, u1 and w are the unknown displacement 
functions of the mid-plane. ,x denotes the differentiation 
with respect to x. Ø(z) is the shape function and chosen as a 
cubic function of layer thickness. The state of stresses in 
each kth layer are given by generalized Hooke’s Law and 
kinematic relations [8] as follows: 

   
(2) 

Terms of “ ” are the transformed reduced 
stiffnesses depending on materials properties such as 
elasticity modulus (Eij), shear modulus (Gij) and Poisson 
ratio (υij) [9]. By use of stress-strain relations into force and 
moment definitions, the constitutive equations given in 
detail in Ref. 8 are obtained. The governing equations used 
in the study is given as below: 

 

   

   

   

(3) 

 
By using the constitutive equations into governing 

equations and applying the boundary conditions which can 
be prescribed at the edges of the beam where x=0 and x=L 
for simply supported (S), cantilever (C) and free (F) cases 
simultaneously, three unknown displacement functions with 
eight integration constants are obtained as follows: 

   

    

   

   

      

      

      

   

(4) 

 
Tsai-Wu and Tsai-Hill failure criteria are commonly 

used in the stress analysis of layered composite beams. As 
long as the equilibrium expressed by normal and shear 
stresses of any point, maximum tensile, compressive and 

shear strengths are satisfied, failure does not occur in the 
structure. For a composite beam, Tsai-Wu 

   

   

(5) 

and Tsai-Hill 

   
(6) 

failure criteria can be simplified and given as below. 
The terms  and  are defined as the in-plane normal 
and shear stresses,  and  as strength parameters,  
and  as the maximum tensile and compressive strengths 
in x- direction and  as the shear strength respectively. 

OPTIMIZATION METHOD 
Genetic algorithm is an evolutionary optimization 

technique that is firstly used by Goldberg [10] and Hajela 
[11] in structural optimization. It generally depends on 
improving of a random initial population by genetic 
operators such as reproduction, crossover and mutation. In 
the study, fiber orientation angles (θ(k)) are chosen as the 
design parameters where  represents the number of layer. 
The optimization process is performed for two cases. In the 
first case, the minimum bending stresses and corresponding 
stacking sequences are obtained without taking failure 
criteria into consideration. A random initial population 
including the stacking sequences is generated and the 
individuals are ranked from minimum to maximum after 
each generation. Then genetic operators are applied until 
the targeted value is obtained for a specific number of 
generation. In the second case, the failure criteria are 
inserted into the algorithm, after each generation the 
minimum bending stresses of the corresponding stacking 
sequence are calculated and validity of the optimum values 
are controlled for Tsai-Wu and Tsai-Hill failure criteria. 

NUMERICAL RESULTS 
In the optimization problem, the composite beam is 

assumed to be constructed of graphite/epoxy layers with a 
length of L=1 m, thickness of h=0.02 m and under a 
uniform transverse distributed load of q(x)=1000 N/m. 
Mechanical properties are given as follows [12]: 
  E11=241.5 GPa, E22=E33=18.89 GPa, 
  G23=5.18 GPa, G12=G13=3.45 GPa, 
  XT=241.5 GPa, XC=18.89 GPa, 
  S=18.89 GPa 
  υ23=0.25, υ12=υ13=0.24 

(7) 

In Table 1 and Table 2, the minimum normal and shear 
stresses and corresponding stacking sequences are 
presented for different boundary conditions. The 
optimization process is performed with a population of 50 
individuals and a fiber increment of 10° at certain cross-
sections of the beam. The normal stresses are obtained at 
x=L/2 and z=-h/2, shear stresses are obtained at z=-h/8, and 
x=L/4 for C – C, C – F and S – S boundary conditions 
respectively. In the first case, stress values are obtained 
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without taking the failure criteria into consideration and 

most of the results are identical with the exact solution. In 
the second case, by use of the failure criteria, all of the 

stress values are obtained identically with the exact 
solution. 

 

Table 1. Minimum normal stresses (σxx) and corresponding stacking sequences for different boundary conditions 
Boundary 
Condition  σxx

[Pa] 
Stacking 
Sequence 

Exact Value 1704.20 70°/50°/0° 
Min. Value (1) 41783.80 30°/50°/0° C – C 
Min. Value (2) 1704.20 70°/50°/0° 
Exact Value 260712.70 90°/90°/0° 

Min. Value (1) 260712.70 90°/90°/0° C – F 
Min. Value (2) 260712.70 90°/90°/0° 
Exact Value 147395.60 80°/80°/10° 

Min. Value (1) 147395.60 80°/80°/10° S – S 
Min. Value (2) 147395.60 80°/80°/10° 

 

Table 2. Minimum shear stresses (τxz) and corresponding stacking sequences for different boundary conditions 
Boundary 
Condition  τxz

[Pa] 
Stacking 
Sequence 

Exact Value 0.20 40°/10°/80° 
Min. Value (1) 0.20 40°/10°/80° C – C 
Min. Value (2) 0.20 40°/10°/80° 
Exact Value 18.60 10°/80°/70° 

Min. Value (1) 18.60 10°/80°/70° C – F 
Min. Value (2) 18.60 10°/80°/70° 
Exact Value 1170.10 30°/90°/70° 

Min. Value (1) 4709.40 10°/70°/50° S – S 
Min. Value (2) 1170.10 30°/90°/70° 

 
Optimization process is performed throughout 20 

generations by minimizing the stress values in each 
generation. For a three layered beam and fiber increment of 
10°, there are 1000 possible stacking sequences and 
optimum values are obtained among these. Since there will 
be too many possible stacking sequences for smaller fiber 
increment angles and many number of layers, efficient use 
of the algorithm will be inevitable. Thus, the efficiency of 
algorithm is increased by Tsai-Wu and Tsai-Hill failure 
criteria. As illustrated in the figures, the use of failure 
criteria generally leads to better results in earlier 
generations. The stacking sequences and corresponding 
normal and shear stresses are optimized for two cases and 
they are compared with the exact solution. 
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Fig. 2. The variation of normal stresses with respect to the number 
of generation for C – C boundary condition 

In Figure 2, 3, 4, the variation of normal stresses with 
respect to the number of generation are presented for C – C, 
C – F and S – S boundary conditions. Although the 
minimum stress values are obtained for all boundary 
conditions, the ones obtained with failure criteria converge 
faster than the others as illustrated. The minimum values 
are obtained in 10th, 3rd and 2nd generation for C – C, C – F 
and S – S boundary conditions respectively. 
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Fig. 3. The variation of normal stresses with respect to the number 

of generation for C – F boundary condition 

In Figure 5, 6, 7, the variation of shear stresses with 
respect to the number of generation are presented for 
various boundary conditions. In common with the normal 
stresses, minimum shear stresses are generally obtained for 
both cases. On the other hand, stress parameters with failure 
criteria generally converge faster to the exact values as well 
as the previous figures for normal stresses.  
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Fig. 4. The variation of normal stresses with respect to the number 

of generation for S – S boundary condition 
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Fig. 5. The variation of shear stresses with respect to the number 

of generation for C – C boundary condition 
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Fig. 6. The variation of shear stresses with respect to the number 

of generation for C – F boundary condition
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Fig. 7. The variation of shear stresses with respect to the number 

of generation for S – S boundary condition 

The minimum values are obtained in 13th, 11th and 
12th generation for C – C, C – F and S – S boundary 
conditions respectively. The convergence to the minimum 
can be increased by use of a bigger population and various 
crossover and mutation ratios. 

CONCLUSION 
In the study, the optimization of stacking sequences of a 

laminated composite beam is carried out for minimum 
bending stresses. Since it is very important for a structure to 
withstand the external and interior effects, the safety of the 
design is controlled by use of various failure criteria in the 
optimization process. The optimization problem is 
considered as a minimization problem and optimum values 
are investigated. For both of the bending stresses and 
various boundary conditions, minimum bending stresses are 
identical with the ones obtained by exact solution. The 
study can be extended by use of different beam theories, 
failure criteria, material properties and number of layers. 
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