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Abstract 

In recent papers the authors present and develop an original method for obtaining two-sided bounds of the exact eigenvalues. This idea 
is based on the combination of nonconforming finite element methods giving lower bounds of eigenvalues and a postprocessing procedure 
using conforming finite element spaces. Here a new approach is proposed, applicable to second- and fourth-order eigenvalue problems. 
Namely, a conforming finite element method is used for eigenpairs approximation and then by means of nonconforming recovery interpolant 
a lower bound approximation of the exact eigenvalues is obtained when the mesh parameter 0  h >  is sufficiently small. 

Some appropriate combinations of finite elements (conforming and nonconforming) which fulfil the algorithm are presented and 
discussed. Numerical experiments illustrating the efficiency of the proposed method are also given. 
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1. INTRODUCTION 
Eigenvalue problems arise in many physical and 

engineering applications. Because of the fact, that very few 
of them can be solved exactly, the two-sided bounds of 
eigenvalues is a very important tool in computation using 
finite element method (FEM) especially. Nowadays, the 
approaches for obtaining the eigenvalue approximations 
simultaneously from above and from below use different 
postprocessing procedures (see [1,2,3]). 

In this paper, we define "nonconforming interpolations" 
of conforming eigenfunction approximations. This 
interpolation procedure gives lower bounds of eigenvalues. 
So, we just have to solve essentially one discrete eigenvalue 
problem. 

The model eigenvalue problems are stated as follows: 
 

uum λ∆ =−  in ,2;1m, =Ω  
 

       0u =     on Ω∂ ,    (1) 
 

    0u =∂ν    on Ω∂  if 2m= , 
 

where Ω  is a bounded polygonal domain in 2R  with 
boundary Ω∂ . 

Let )(H s Ω  be the usual s-th order Sobolev space on 

Ω  with a norm Ω,s⋅  and seminorm Ω,s⋅  and ),( ⋅⋅  

denote the −)(L2 Ω inner product. 
The variational elliptic eigenvalue problems associated 

with (1) are: find number R∈λ  and function ),(Hu m
0 Ω∈  

2;1m = such that 
 

,1u
),(H V  v v),(u,   v)a(u,

,0

m
0

=
≡∈∀=

Ω

Ωλ
  (2) 

 

where 
 

V,  vu, dy dxv u    v)a(u, ∈∀∇⋅∇= ∫
Ω

   

or   
 

V,  vu, dy dxv u    v)a(u, ∈∀= ∫ ∆∆
Ω

 

 

for second- or fourth-order problem, respectively.  
One sees that (2) has an eigenvalue sequence (see [4]): 

 

...   ...      0 k21 ≤≤≤≤< λλλ ,   
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.  lim kk ∞=∞→ λ  

The associated eigenfunctions ju  can be ortho-

normalyzed in )(L2 Ω  and they constitute a Hilbert basis 
for V. 

 
 

2. FINITE ELEMENT METHOD 
Let hτ  be a triangulation of Ω  which satisfies the usual 

regularity conditions (see [5]), i.e. there exists a constant 
0>σ  such that σρ ≤KK /h , where Kh  is the diameter of 

the element hK τ∈  (rectangle or triangle) and Kρ  being 
the diameter of the largest circle contained in K. Then we 
denote KK hmaxh

hτ∈= . 

Let hV  be the finite element space consisting of 
piecewise polynomial functions of degree 2≥  defined on 

hτ . 
Then the approximation of the problem (2) is: find 

Rh∈λ  and function 0u,Vu hhh ≠∈  such that  
 

. V  v ),v,(u   )v,a(u hhhhhhh ∈∀= λ   (3) 
 

 
We emphasize that VVh ⊂  (conforming FEM). Let us 

also introduce nonconforming finite element spaces hV~  
related to the partitions hτ . For this purpose we define 
mesh-dependent bilinear form 
 

,Vv,u,)v,u(a)v,u(a
hK

Kh ∈= ∑
∈τ

 

where  
 

∫ ∇⋅∇=
K

K dydxvu)v,u(a   or  ∫=
K

K dydxvu)v,u(a ∆∆  

 

for second- or fourth-order problem, respectively. In case of 
conforming FEM, obviously ),(a ⋅⋅  and ),(ah ⋅⋅  coincide. 
 

Our algorithm applies the so-called "nonconforming 
interpolation operator" hh V~V:i~ →  such, that 
 

.V~v~,Vv,0)v~,vi~v(a hhhhh ∈∀∈∀=−   (4) 
 

We specify a set of nonconforming finite elements with 
integral-type degrees of freedom: 
 

(A) For the second-order eigenvalue problems:  
 

o Linear triangular elements of Crouzeix-Raviart (C-R) 
[5]; 

 

o Bilinear rectangular elements of Rannacher-Turek  
( rot

1Q ) [6]; 
 

o The extensions of the elements above (EC-R,  rot
1EQ ) 

[7,8]. 
 
(B) For the fourth-order eigenvalue problems: 
 

o Triangular Morley element with degrees of freedom  

∫∫
∂

j
j

l
l

j dlv
dl
1),a(v ν , where jl  is the edge of any 

hK τ∈  opposite of the vertex 3,2,1j,a j = [9]; 
 

o The rectangular version of Morley element with 
polynomial set }yx3y,xy3x{spanPP 2323

2K −−+=  
[10], where 2P  denotes the set of all polynomials in two 
variables of degree less than or equal to 2. 

 
Lemma 1. If hV~  is constructed by any elements described 
in (A) or (B) respectively, then the equality (4) is fulfilled. 
 
Proof. First, we consider triangular (C-R and Morley) finite 
elements for second- (m = 1) and fourth-order (m = 2) 
problem, respectively. 

Then for any hK τ∈  
 

∫∫ =
KK l

h
l

dlvi~dlv                        (C-R) 

 

( )∫∫ ∂=∂
KK l

h
l

dlvi~dlv νν            (Morley triangle), 

 

where ν∂  is the outer normal derivative and Kl  are the 
edges of K. 
 

Now, we adopt the following notations:  
vv;vv 00 ∇==∂ ∆ν . 

Then, when V  v ∈  and V~v~h∈ , we have 
 

( ) .2;1m,dydxv~vi~v)v~,vi~v(a h
1m

h
K K

1m
hhh

h

=−=− −

∈

−∑ ∫ ∆∆
τ

 

For any hK τ∈ , 
K|hv~  is a polynomial from )K(Pm . 

Using the Green formula and constv~
K|h

1m =−∆ , it 
follows 

 

( ) ( )dlvi~vv~dydxv~vi~v h
K

1m
h

1m
h

1m
h

K

1m −∂=− ∫∫
∂

−−−−
ν∆∆∆  

 

( ) .0dlvi~vv~ h
K

1m
|h

1m
K

=−∂= ∫
∂

−−
ν∆  

 

Into the last relation we use that 
 

,dlvi~dlv h
K

1m

K

1m ∫∫
∂

−

∂

− ∂=∂ νν  

 

for m = 1 (C-R) and m = 2 (Morley triangle), respectively. 
 
The next considerations involve the nonconforming 

elements rot
1Q , EC-R and rot

1EQ , so that m = 1 and hV~  
consists of piecewise incompleted polynomials of degree 
two. 

Let T be the reference element, so  
 

}x-1 y   01,  x  0:T  y){(x, T ≤≤≤≤∈=   
 

if on T is defined the EC-R triangular element and  
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}1 y x,  0:T   y){(x,  T ≤≤∈=   
 

if Ω  is discretized by means of rot
1Q  or rot

1EQ -elements. 

These elements are depicted in Fig. 1 and also  
2
1 y  x 00 == . 

 

 
 

Фиг. 1. The considered EC-R, rot
1Q  and rot

1EQ -elements 

 
Since T is an incomplete quadratic element, for 

hh V~v~ ∈  it can be written: 
 

)y,x(v~)xx()y,x(v~)y,x(v~ 00hx000hh ∂−+=  
 

)y,x(v~)xx(
2
1)y,x(v~)yy( 00hxx

2
000hy0 ∂−+∂−+  (5) 

 

).y,x(v~)yy(
2
1

00hyy
2

0 ∂−+  
 

In addition 
 

;v~)xx()y,x(v~)y,x(v~ hxx000hxhx ∂−+∂=∂  
 

.v~)yy()y,x(v~)y,x(v~ hyy000hyhy ∂−+∂=∂  
 

Case 1. EC-R-element 
In this case constv~v~ hyyhxx =∂=∂ . Thus, we obtain: 
 

( ) ( ) dydx)y,x(v~vvi~dydxv~vvi~ 00hx
T

hxhx
T

hx ∂−∂=∂−∂ ∫∫∫∫  

 

( ) dydxv~)xx(vvi~ hxx0
T

hx ∂−−∂+ ∫∫  

 

( )dyvvi~)y,x(v~ h
ll

00hx
21

−













−∂= ∫∫  

 

dy)xx()vvi~(v~ 0h
ll

hxx
21

−−













−∂+ ∫∫  

 

∫∫ −∂−
T

hhxx .dydx)vvi~(v~  

 

The first and the third term disappears and then 
 

( ) ( ) .dyvvi~)xx(v~dydxv~vvi~

1l
h0hxxhxh

T
x ∫∫∫ −−∂=∂−∂  

 

By analogy, 
 

( ) ( ) .dxvvi~)yy(v~dydxv~vvi~

1l
h0hyyhyh

T
y ∫∫∫ −−∂=∂−∂   

 

Having in mind that hyyhxx v~v~ ∂=∂ , we get 
 

( ) .0dydxv~vvi~ hh
T

=∇⋅−∇∫∫  
 

Case 2. rot
1Q -element 

Here, the presentation (5) is valid and besides 
 

.constv~v~ hyyhxx =∂−=∂    (6) 
 

We calculate 
 

( ) dydxv~vvi~ hx
T

hx ∂−∂∫∫  

 

( )dyvvi~)y,x(v~ h
ll

00hx
42

−













−∂= ∫∫  

 

dy)xx()vvi~(v~ 0h
ll

hxx
42

−−













−∂+ ∫∫  

 

∫∫ −∂−
T

hhxx .dydx)vvi~(v~  

 

Thus, 
 

( ) ( ) .dydxv~vvi~dydxv~vvi~ hxx
T

hhxh
T

x ∂−−=∂−∂ ∫∫∫∫ (7) 

 

Using the same arguments, it follows: 
 

( ) ( ) .dydxv~vvi~dydxv~vvi~ hyy
T

hhyh
T

y ∂−−=∂−∂ ∫∫∫∫ (8) 

 

Finally, from (6) we obtain 
( ) .0dydxv~vvi~ hh

T
=∇⋅−∇∫∫  

 
Case 3. rot

1EQ -element 

The relation (5) is also fulfilled for any hh V~v~ ∈  as well 
as (7) and (8). Then 

 

( ) ( ) .dydxv~vvi~dydxv~vvi~ h
T

hhh
T

∆∫∫∫∫ −−=∇⋅−∇  

 

But constv~h =∆  and the last integral is equal to zero 
because of the condition 

 

( ) .0dydxvvi~

T
h =−∫∫  

 
For all three cases we make an affine transformation 

from T to any element hK τ∈  and summarizing over all K, 
we get the equality (4). 

The Morley rectangular finite element case is 
considered in [10] and in this case (4) is proved therein. 

 
3. MAIN RESULT 

In this section we present a new simple algorithm for 
obtaining two-sided bounds of any exact eigenvalue λ . 
 

Let )u,( hhλ  be the eigenpair approximation obtained 
by (3). We consider the nonconforming interpolation of the 
function hu , i.e. hhui~  and define the number 
 

,
)ui~,ui~(

)ui~,ui~(a~

hhhh

hhhhh
h =Λ     (9) 

 

where 1u ,0h =Ω . 

Theorem 1. Let )u,( hhλ  be an approximate eigenpair of 

the exact one )u,(λ , V)(Hu 2m Ω+∈  and  
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1uu ,0h,0 == ΩΩ .  
 

Suppose that the conforming finite element space hV  
consists of piecewise polynomial functions of degree 

1,2  m 1,  m  n =+≥  and the corresponding space hV~  
contains nonconforming elements considered in Lemma 1. 
Then the number h

~Λ  determined by (9) ensures a lower 
bound of the exact eigenvalue, i.e. 

 

.~
hh λλΛ ≤≤      (10) 

 
Proof. The upper bound in (10) is obvious because the FEM 
in (3) is conforming (see e.g. [4]). 

Let us introduce the norms: 
 

Vv),v,v(av 2
a ∈=  and hhhh

2
ah V~v~),v~,v~(av~

h
∈= . 

 
First, we suppose that )u~,~( hhλ  is an approximate 

eigenpair corresponding to u),(λ  and obtained by 
nonconforming FEM using elements described in (A) or 
(B), respectively. In these cases, h

~λ  approximates λ  from 
below (see [1,3,10]). 

 
We calculate: 

 

)u~ui~,u~ui~(~)u~ui~,u~ui~(a hhhhhhhhhhhhhh −−−−− λ  
 

)u~,u~(a)u~,ui~(a2)ui~,ui~(a hhhhhhhhhhhh +−=  
 

)u~,u~(~)u~,ui~(~2)ui~,ui~(~
hhhhhhhhhhhh λλλ −+−  

 

( ) .ui~~~ 2

,0hhhh
Ω

λΛ −=  

 
So that, we obtain: 
 

.
ui~

u~ui~~u~ui~
~~

2

,0hh

2

,0hhhh
2

ahhh

hh
h

Ω

Ω
λ

λΛ
−−−

=−  

 

This equality shows that hh
~~ λΛ >  asymptotically, 

because the function hhh u~ui~ −  is a piecewise polynomial 

belonging to hV~ . 
Consequently, we have to estimate 

 

.u~ui~ui~ui~u~ui~
hhh ahh

a
hhh

ahhh −+−≤−  

 
The interpolation operator hh V~V:i~ →  has a finite 

range, i.e. ∞< )i~( range dim h . Therefore it is compact.  
Thus 

 

.constC
v

vi~
supi~

,m

,mh
Vvh =≤= ∈

Ω

Ω  

 
It follows that 
 







 −+−≤−

2
ahh

2
ah

2

ahhh
hh

u~ui~uuCu~ui~ . (11) 

 
The space hV  contains piecewise polynomial functions 

of degree at least n = m + 1 and 
 

( ) .2;1m,hOuu 2m22
ah ==− +  

 
On the other hand hi

~  coincides with the elliptic 

projection operator on hV~  denoted by hR~  and verifying 
 

.V~v~,Vv),v~,v()v~,vR~(a hhhhhh ∈∈∀=  
 

Indeed, from (4) ( 0const >=α : 

,0)vR~vi~,vvi~(a

)vR~vi~,vR~vi~(avR~vi~

hhhh

hhhhh
2

h,mhh

=−−=

−−≤−α
 

where h,m⋅  is the mesh-dependent m-th norm. 

 
For the nonconforming finite elements (A), (B) under 

consideration we have (see [1,10,12,13]) 
 

.uhCu~uO~ 2
1m

22
ahh +≤




 −=−λλ   (12) 

 
The elliptic operator hR~  fulfils a superclose property 

with the corresponding finite element eigenvector [11] (see 
also [13]): 

 

.uhCuuR~uui~ 2
,2m

2
ahhahh

hh Ω+≤−=−  (13) 
 

Thus from (11), using (13), we obtain 
 

.hCu~ui~ 42
ahhh

h
≤−  

 

Consequently  
 

4
hh hC~~
≤−λΛ . 

 

This inequality and (12) give for h sufficiently small: 
 

,0~
h ≤−λΛ  

 

which proves (10).  
       □ 

 
So, we can propose the following 

 
Algorithm 
 

1. Solve the discrete eigenvalue problem (3) by means of 
conforming FEM and find an eigenpair ( )hh u,λ ; 

 

2. Construct a nonconforming interpolant of hu  using 
convenable basis discussed in Lemma 1. It is preferable 
to use integral type degrees of freedom in hV~  such that 
they take part in hV , too; 

 

3. Calculate j,h
~Λ  according to (9). Then 

 

].,~[ hh λΛλ∈  
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4. NUMERICAL RESULTS 
To illustrate the theoretical results we report in this 

example on related second-order eigenvalue problem: 
 

uu λ∆ =−  in ,Ω  
   0u=     on Ω∂ , 

 

where ),0(),0( ππΩ ×= . 
 

For this problem the exact eigenvalues are  
 

...,3,2,1s,ss 2,1
2
2

2
1j =+=λ  

 

In Table 1 the results from numerical experiments for 
the first four eigenvalues are given. Their exact values are 
equal to 2, 5, 5, 8, respectively. The domain is uniformly 
divided into 2n2  isosceles triangles and thus the mesh 
parameter is 1/n, n=4,8,12,16. The numerical results j,hλ  
obtained by means of 6-node triangular elements and the 
resulting numbers j,h

~Λ  after nonconforming C-R-
interpolation of the conforming FE solution are compared 
with those obtained solving the eigenvalue problem with 
nonconforming C-R elements 4,3,2,1j,~

j,h =λ .  

Table 1 illustrates that both eigenvalue sequences j,h
~Λ  

and j,h
~λ  are increasing and the first sequence is greater 

than the second one, which verifies the theoretical results. 
 

Table 1. Eigenvalue approximations j,hλ  computed by 
means of 6-node quadratic triangular conforming FEs, 
values j,h

~Λ  obtained as a result of nonconforming C-R 
interpolation of the conforming approximate FE solution 
and eigenvalue approximations j,h

~λ  by means of 
nonconforming C-R FEs 
 

n 
 

j = 1 j = 2 j = 3 j = 4 
 

j,hλ  
 

2.0066781 
 

5.0541368 
 

5.1049165 
 

8.3228101 

4    j,h
~Λ  1.9978343 4.9692132 4.9659029 7.9174807 

j,h
~λ  

 

1.9654755 4.5460329 4.5460365 7.4309499 

 

j,hλ  
 

2.0004496 
 

5.0040458 
 

5.0074545 
 

8.0266116 

8    j,h
~Λ  1.9998512 4.9979470 4.9972997 7.9916007 

j,h
~λ  

 

1.9914177 4.8881333 4.8881346 7.8689405 

 

j,hλ  
 

2.0000902 
 

5.0008288 
 

5.0015185 
 

8.0055801 

12   j,h
~Λ  1.9997004 4.9995861 4.9994428 7.9982068 

j,h
~λ  

 

1.9961894 4.9504042 4.9504053 7.9446002 

 

j,hλ  
 

2.0000287 
 

5.0002657 
 

5.0004860 
 

8.0018049 

16   j,h
~Λ  1.9999996 4.9999990 4.9999989 7.9997821 

j,h
~λ  

 

1.9978572 4.9721260 4.9721271 7.9710044 

 
 

Regardless of the fact, that the second and the third 
eigenvalues are equal, the proposed theoretical results are 
valid for both of them. 
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